BIOLOGICAL, SEROLOGICAL AND MOLECULAR CHARACTERIZATION OF EGYPTIAN Zucchini yellow mosaic virus ISOLATE INFECTING SQUASH PLANTS IN FAYOUM GOVERNORATE

M.R. Tohamy 1*, Ahmed A. Kheder 2, G.A.M. Ghanem 3 and Taqwa M. Sulaiman 4
3. Plant Pathol. Dept., Fac. Agric., Cairo Univ., Egypt

Received: 12/11/2018 ; Accepted: 18/11/2018

ABSTRACT: Zucchini yellow mosaic virus (ZYMV) is one of the most important viruses and is responsible for significant losses in cucurbit crops worldwide. In Egypt, it causes serious economic losses in squash especially in spring season. During 2014-2015, samples were collected from squash fields in different Provinces, Fayoum Governorate. In Fayoum, ZYMV-naturally infected squash plants exhibited severe mosaic and blisters, leaves deformation, blisters on the fruits and discoloration hardening of flesh, as well as external fruit cracks. Percentages of infection in squash cv. Eskandrani, ranged between 20-35% and 70-78% in mid-March and May, respectively. Meanwhile, it ranged between 15-25% in September and 62% in the end of November. The virus was isolated from naturally-infected squash plants serologically depending on enzyme-linked immunosorbant assay (ELISA), and biologically by mechanical inoculation to different species belonging four families i.e., Amaranthaceae, Chenopodiaceae, Cucurbitaceae, Solanaceae. In virus vector relationship, transmission rates recorded 84.6, 86.6, 93.3, 90, and 91.6%, respectively for squash cvs. Alia, Asma, Eskandrani, Mabrouka and Safa. In this context, one insect vector (Myzus persicae) proved its ability to transmit ZYMV. Electron microscopy (EM) of partially purified preparation method revealed flexuous particles approximately 750X15 nm. Serologically, TBIA proved to be effective in detecting ZYMV in the infected samples and reliable technique for the virus detection in squash leaf midrib and petioles. Electrophoresis analysis of the reverse transcription polymerase chain reaction (RT-PCR) amplification revealed that the primers amplified a product size of 458bp for the RNA extracted from ZYMV-infected tissues.

Key words: Myzus persicae, polymerase chain reaction (PCR), RT-PCR, zucchini yellow mosaic virus, ZYMV.

INTRODUCTION

Cucurbitaceous crops comprise a large and diverse group of crops. Cucurbits are warm-season crops that are cultivated and harvested over spring, summer, and autumn seasons. They constitute an important part of a diverse and nutritious diet throughout the world, which are used as salad and pickled (cucumber), cooked (all gourds and squashes), candied, or preserved (ash gourd) vegetables or as dessert fruits (muskmelon and watermelon). Also, cucurbits are used as fiber source and for utensil preparations, decorations, and ceremonial and medicinal purposes (McGrath, 2004; Sharma and Gaur, 2015). All cucurbitaceous crops are susceptible to several viruses i.e., Zucchini yellow mosaic virus (ZYMV), Squash mosaic virus, and others.
virus (SqMV) (Mansilla et al., 2013; Chinnaraja et al., 2016), Watermelon mosaic virus (WMV) and Tobacco ring spot virus and they also infect certain non-cucurbitaceous weeds and wild cucurbits.

Zucchini yellow mosaic virus (ZYMV) is a member of the genus Potyvirus, the largest group among plant viruses, and is the major limiting factor for production of cucurbits worldwide. The disease is characterized by pronounced reduction in plant growth, yellow mosaic and distortion of leaves, and malformation of fruit (Simmons et al., 2008; Lecoq et al., 2014; Khalifa et al., 2015). ZYMV can result in yellowing and stunting of the plant, as well as severe leaf and fruit deformities that can reduce yields up to 94%. The economic significance of this crop pathogen is enormous. Understanding the epidemiology and evolution of ZYMV is therefore central to controlling this devastating crop disease (Simmons et al., 2011). This virus is transmitted through contact between plants, seeds and mechanically (Coutts et al., 2011; Coutts et al., 2013; Tymchyshyn et al., 2017). Also, a large number (26) of aphid species has been shown to be capable of transmitting the virus, although two species, Myzus persicae and Aphis gossypii, have the highest reported transmission efficiencies (41% and 35%, respectively) (Katis et al., 2006; Pinto et al., 2008; El-Yborollosy, 2015). ZYMV particles are flexuous, 750 nm in length, and contain a monopartite genome consisting of a positive-sense ssRNA with a 5´ genome-linked protein (VPg) (Anthony-Johnson et al., 2013). Most potyvirus proteins are multifunctional and the P3 proteins are among the most variable proteins in potyvirus genomes and are considered key virulence factors (Tymchyshyn et al., 2017). Several methods were used for laboratory diagnosis ZYMV included serological and nucleic acid-based techniques utilizing polymerase chain reaction (PCR) (Hosseini et al., 2007; Zheng et al., 2010; Amer, 2015; Ghanem et al., 2016). Therefore, the purpose of this research was focused on biological, serological and molecular characterization of ZYMV isolate from Fayoum Governorate.

MATERIALS AND METHODS

Biological Studies

Transmission test was carried out with squash (Cucurbita pepo cv. Eskandrani) plants grown in 30 cm pots, under greenhouse conditions, at Plant Pathology Dept., Fac. Agric., Cairo Univ. and Plant Pathology Research Institute, ARC, Giza.

Mechanical transmission and host range study

In early spring (mid-March), field inspection of squash plants were done in Abou Khlaf, Menshat Abdullah, Zawia, Edwa and Azab provinces belonged to Fayoum Governorate. In order to identify and detect ZYMV, visual inspection and samples were collected during 2014 and 2015 growing seasons from squash fields (Cucurbita pepo), Fayoum Governorate. In this region, squashes are planted during early March and harvested from May. Infected squash plants exhibited symptoms of mosaic, leaves deformation, blistering of leaves and fruits collected and kept in ice chests for transportation to the laboratory. Young leaves from some symptomatic plants were collected at random. Each plant sample was labelled and kept separately in a plastic bag at 4ºC until analyzed. Percentages of infection were calculated and confirmed by ELISA test.

ZYMV was mechanically inoculated on hosts including certain diagnostic hosts belonging to Amaranthaceae, Chenopodiaceae, Cucurbitaceae, Leguminosae and Solanaceae families. Five plants were tested from each species. The experiment was repeated three times. Symptoms were examined periodically through a period of 45 days. Back inoculation was performed onto Chenopodium amaranticolor as a local lesions host. The virus was then transmitted mechanically onto squash plants cv. Eskandrani as a source for virus propagation. Potassium phosphate buffer (0.1 M), pH 7.2 was used in mechanical inoculation. Inoculated plants were maintained in the greenhouse at daily temperatures of about 25ºC.

Aphid transmission

In the surveyed squash fields, Myzus persicae is the most existence and spread aphid vectors
during 2-years experimentation. Aphid transmission using *Myzus persicae* was conducted as described by El-YBorollosy (2015). Aphid species were collected from the same squash field and identified in Econ. and Pest. Dept., Fac. Agric., Cairo Univ. Aphid’s samples were reared on turnip plants as a virus-free culture, then tested biologically and serologically to be confirmed. Non-viruliferous insects were used for transmission experiments and reared on turnip plants under cadges. After starvation for 1 hr., groups of 5 insects were placed for 15 min acquisition access feeding (AAF), on ZYMV-infected squash plants cv. Eskandrani which were inoculated 3 weeks previously. Viruliferous insects (5 aphids/plant) were transferred on healthy squash seedlings of cvs. Alia, Asma, Eskandani, Mabrouka and Safa (carrying the two true leaves) for 1 hr., inoculation access feeding (IAF) and then sprayed with insecticide, then kept in an insect-proof cages. To determine specificity of vector in virus transmission, one insect (*M. persicae*) was used to transmit the virus from plant to plant in separated experiment. After 2weeks, plants were inspected for ZYMV-infection and results were confirmed using ELISA test and rates of transmission were calculated as follows:

\[
\text{Rates of transmission} \% = \frac{\text{No. of infected}}{\text{No. of total tested plants}} \times 100
\]

Physical Studies Using Electron Microscopy (EM)

Carbon coated grid was dipped in partially purified virus for 5min, then stained with 2% sodium phosphotungstate (PTA) and air dried. Examination was carried out using an electron microscope JEOL (JEM-1400 TEM, Japan) at the candidate magnification at Faculty of Agric., Cairo Univ. Images were captured using CCD camera Model AMT. Virus examination was done in Research Park (FARP), TEM Lab., Fac. Agric., Cairo Univ.

Serological Detection of ZYMV

Serological tests of enzyme linked immunosorbent assay (DAS-ELISA) and tissue blot immuno-printing assay (TBIA) were done for ZYMV detection as described by Ghanem (2003) and Ghanem et al. (2016), respectively. DAS-ELISA was conducted using polyclonal antiserum (ZYMV-Pab) to ZYMV. ELISA Kit containing ZYMV-Pab was supplied by Agdia, India.

Concerning tissue blot immuno-printing assay (TBIA) on nitrocellulose membrane (NCM), the protocol was performed to detect ZYMV-infection and to confirm ELISA detection. This procedure was done to determine the distribution of ZYMV-antigen in infected tissue sections (petioles and midrib) according to Ghanem et al. (2016). Preparations were treated with equal volumes of TBST buffer containing 0.01 M Tris-HCl, 0.05% Tween-20 and 0.15 M NaCl, pH 8.0 in TBIA test; chromogenic substances were used for color development. Nitroblue tetrazolium (NBT)-5-bromo-4-chloro-3-indolyl phosphate (BCIP) complex was used for purple-color development in positive reaction compared with green color for negative reaction.

Molecular Detection Using Reverse-Transcriptase Polymerase Chain Reaction

In this procedure, reverse-transcriptase polymerase chain reaction (RT-PCR) was done according to Hosseini et al. (2007). Total RNA from ZYMV-infected plants was extracted using a phenol/ chloroform protocol. Three µl of RNA were submitted to reverse transcription in a final volume of 20 µl, using 2 µl PCR buffer 10x (0.5M Tris-HCl, 0.7 M KCl, 0.1 M MgCl₂, pH 8), 1µl DTT (100 mmol/µl), 1µl dNTPs (10 mmol/µl), 0.5µl RNase inhibitors enzymes (10 mmol/µl) and 2µl Reverse-DAg primer (100 pmol/µl) (5’- GCG TGG CAA TGA CAT-3’ nucleotide position 8735-8749 on sequence L 31350) for one hour at 42°C with 0.5 µl MMLV reverse transcriptase (200nmol/µl). Five µl of the RT reactions were used for PCR using a 5 µl PCR buffer 10 x, 2µl MgCl₂, 1µl dNTPs (10 mmol/µl), 0.5µl Taq polymerase (5 unit/µl), 1µl Reverse-DAg (100pmol) and 1µl Forward-DAg (100pmol) (5’- ATT TGC GCT GCG ATG-3’/ 8291-8305 on sequence L 31350) oligonucleotides encompassing the N-terminal part of the coat protein coding region and the C-terminal part of the polymerase (Nlb) (primers designed by Desbiez et al., 2002). PCR reactions were performed by a first denaturation of the samples at 94°C for 3 minutes followed...
RESULTS AND DISCUSSION

Zucchini yellow mosaic virus (ZYMV) is an aphid-transmitted virus that causes devastating damage and a major constraint to cucurbit crops in all production areas worldwide, including Egypt.

Biological Studies

Symptomatology, virus isolation and host range studies

Diagnosis of ZYMV was essentially based on field inspection followed by ELISA screening indicated that the naturally infected plants were infested with *Aphis gossypii*. ZYMV-naturally infected squash plants exhibited severe mosaic and blisters, filiform, leaves deformation, blisters on the fruits and discoloration hardening of flesh as well as, and external fruit cracks (Figs. 1A, B and C; 2A, B). Squash plants showing symptoms indicative of ZYMV-infection were observed in both of commercial fields on Alia, Asma, Eskandrani and Safa, Mabrouka cultivars, as well as in the greenhouse on the mechanically-inoculated plants, compared with healthy leaf which depicted as a control. The obtained results indicated that all the aforementioned squash cultivars currently available were susceptible to ZYMV and confirmed by ELISA test. Such collective symptoms have previously been described for ZYMV-infection on cucurbit crops worldwide (Zhao et al., 2003; Müller et al., 2006; El-Hoseyny et al., 2010; Sharma and Gaur, 2015; Wang and Li, 2017).

Concerning naturally infected squash cv. Eskandrani with ZYMV, in spring season, percentages of infection ranged between 20-35% and 70-78% in mid-March and May, respectively. Meanwhile, the percentages of infection ranged between 15-25% in September and 62% in the end of November. These results revealed that the incidence and spread of aphid in the early spring increased percentages of infection which reflect on the yield losses and fruit discoloration as well as deformation due to ZYMV-infections.

In the end of the two seasons, the lowest percentage of infection in November compared with that of May due to the existence and heavily infestation with whitefly (*Bemisia tabaci*), which reduce aphid population. Similar results with significant yield losses due to ZYMV infections have been reported ranging from 50 to 94% in Germany (Müller et al., 2006); up to 80% in Western Australia (Coutts et al., 2011) and 19.7-84.9% in Ivory-Coast (Kone et al., 2017).

The virus was sap and aphid-transmitted from squash cv. Eskandran to other cultivars and other plant species as well as back inoculated with high efficiency. The host range of ZYMV included members within the families: Amaranthaceae, Chenopodiaceae, Cucurbitaceae, Solanaceae. Results presented in Table 1 show that Cucurbita pepo, Cucumber sativus and Luffa aegyptiaca reacted with systemic symptoms, compared to the other tested plant species which reacted with local lesion symptoms (Table 1). Further, mechanically inoculated test plant Chenopodium amaranticolor reacted with local lesions symptom (Fig. 3). Obtained results show that there is little variation in the host range among ZVMV isolates spread globally and these reactions could be useful in differentiation among the *Potyviruses* that infect cucurbit crops. Symptoms and host range of the virus under study are consistent with reports of ZYMV in several countries (Xu et al., 2004; Glasa et al., 2007; Massumi et al., 2011; Hasiów-Jaroszewska et al., 2013).

Concerning virus vector relationship, ZYMV is transmitted efficiently in a non-persistent manner by *M. persicae*. All the aphid-inoculated squash cultivars i.e., Alia, Asma, Eskandran, Mabrouka and Safa were reacted with systemic symptoms. Transmission rates recorded 84.6, 86.6, 93.3, 90, and 91.6%, respectively for Alia, Asma, Eskandran, Mabrouka and Safa. Results in Table 2 reveal that the highest rate of aphid transmission recorded in cv. Eskandran (93.3%) compared with the lowest one (84.6%) for cv. Asma. Also, the results indicates that one insect vector (*M. persicae*) able to transmit ZYMV (Fig. 4). This result reveals the occurrence, ability and specificity of *M. persicae* in ZYMV transmission, as well as its possible role as a vector in the epidemiology of the disease. Moreover, our observations in Fayoum, reveal
Table 1. Reaction of host range plant species to ZYMV infection

<table>
<thead>
<tr>
<th>Family</th>
<th>Tested plant</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranthaceae</td>
<td>Amaranthus reroflexus</td>
<td>CLL</td>
</tr>
<tr>
<td></td>
<td>Cucurbita pepo</td>
<td>SM, LD, Y,B</td>
</tr>
<tr>
<td>Cucurbitaceae</td>
<td>Cucumber sativus</td>
<td>SM, LD, Y</td>
</tr>
<tr>
<td></td>
<td>Luffa aegyptiaca</td>
<td>SM, LD</td>
</tr>
<tr>
<td></td>
<td>Ch. amaranticolor</td>
<td>CLL</td>
</tr>
<tr>
<td>Chenopodaceae</td>
<td>Chenopodium quinoa</td>
<td>CLL</td>
</tr>
<tr>
<td></td>
<td>Solanum nigrum</td>
<td>CLL</td>
</tr>
<tr>
<td></td>
<td>Celosia spicota</td>
<td>NR</td>
</tr>
<tr>
<td>Solanaceae</td>
<td>Datura stramonium</td>
<td>NLL</td>
</tr>
<tr>
<td></td>
<td>Nicotiana glutinosa</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>Gompherena globosa</td>
<td>NR</td>
</tr>
</tbody>
</table>

B= Blisters on fruit, LD= Leaf deformation, CLL= Local lesions, Y= Yellowing, SM= Systemic mosaic, NLL= Necrotic local lesions and NR= No reaction

Table 2. Transmission rates from ZYMV infected plants by *M. persicae* to different squash cultivars

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>No. of infected/tested plants</th>
<th>Rates of transmission (%)</th>
<th>Cultivar reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alia</td>
<td>11/13</td>
<td>84.6</td>
<td>MM, B</td>
</tr>
<tr>
<td>Asma</td>
<td>13/15</td>
<td>86.6</td>
<td>MM, B</td>
</tr>
<tr>
<td>Eskandrani</td>
<td>14/15</td>
<td>93.3</td>
<td>SM, B, Mal</td>
</tr>
<tr>
<td>Mabrouka</td>
<td>9/10</td>
<td>90</td>
<td>SM, B</td>
</tr>
<tr>
<td>Safa</td>
<td>11/12</td>
<td>91.6</td>
<td>SM, B, Mal</td>
</tr>
</tbody>
</table>

MM= Mild mosaic, SM= Severe mosaic, Mal= Malformation
Fig. 1. ZYMV-naturally infected squash cv. Eskandrani exhibiting severe mosaic (A) and blisters, filiform, leaves deformation (B), compared with healthy control (C)

Fig. 2. ZYMV-developed blisters symptom on the fruits of naturally infected squash cv. Eskandrani in Fayoum

Fig. 3. Chlorotic local lesions symptom produced on *Ch. amaranticolor*, artificially inoculated by ZYMV

Fig. 4. In virus-vector relationship experiment, ZYMV-developed blisters symptom illustrating the ability and specificity of one insect aphid *M. persicae* in ZYMV transmission
that ZYMV epidemics are sporadic but occasionally very severe and causes serious economic losses especially in squash in the spring season, compared with the other cucurbit crops such watermelon and cucumber. Symptoms induced on plants infected by aphid transmission were similar to those induced by mechanical inoculation of the virus on squash plants. These results are consistent with those reported by Pinto et al. (2008) who stated that M. persicae transmitted ZYMV at rate of 67%. Furthermore, El-Borollosy (2015) revealed that the most efficient vector for Cucumber mosaic virus was A. gossypii and for ZYMV was M. persicae achieving 95% and 100%, respectively. Nevertheless, Lecoq et al. (2014) in France, found that ZYMV epidemics are sporadic but occasionally very severe compared with WMV, same genus (Potyvirus) which causes regular and early epidemics as well as factors influencing ZYMV epidemiology are still poorly understood. Additionally, Provvidenti et al. (1984), Prendeville et al. (2012) and Romay et al. (2014) explained that the epidemiology in tropical and subtropical regions, because cucurbits can be cultivated all year and several aphid vectors can transmit ZYMV from one crop to the next one and alternatively wild cucurbits can be efficient virus reservoirs. Moreover, Coutts et al. (2013) showed that ZYMV can spread from infected to healthy cucurbit plants by leaf contact (rubbing and crushing) and on blades contaminated with sap from ZYMV-infected leaves. They also, proved important new information on virus epidemiology.

Physical Studies Using Electron Microscopy (EM)

Electron microscopic examination of leaf dip preparations revealed the presence of long, filamentous flexuous virus particles measuring 750X15 nm which are characteristic of the family Potyviridae (Fig. 5). These results confirmed by those obtained by Hosseini et al. (2007); Khalifa et al. (2015) and Wang and Li (2017).

Serological Detection of ZYMV using TBA

Squash plants showing symptoms indicative of ZYMV were observed in both of commercial fields and in greenhouse on cv. Eskandarani. Symptomatic plants were stunted, and failed to produce normal fruits. ZYMV-infected squash in the field on cv. Eskandarani showing mosaic, Blisters, leaf malformation. TBA was done to detect virus distribution within stem tissue in cv. Eskandarani grown either in the field or in the mechanically inoculated plants grown in greenhouse. Obtained results either indicated color formation in diseased plants in naturally infected cultivars of squash or mechanically inoculated in greenhouse (Fig. 6). No color formation (remained green) was observed in the control healthy squash tissue.

Similar results have been observed by Ghanem (2003) working on Okra leaf curl virus and Fath-Allah et al. (2011) working on ZYMV. TBA technique proved to be sensitive in ZYMV detection. The obtained results are in agreement with those obtained by Aljan et al. (2007), Abou-Jawdah et al. (2008) and Ghanem et al. (2016) who mentioned that TBA was the most sensitive serological method used because it allowed CYSDV detection within 5-6 days post-inoculation. Also, they found that TBA is recommended for rapid detection and comparison of CYSDV movement between resistant and susceptible cucumber accessions.

Molecular Detection Using Reverse-Transcriptase Polymerase Chain Reaction

Results presented in Fig. 7 show that RT-PCR resulted in amplification product size of 458 bp in the RNA extracted from ZYMV-infected squash. The obtained results are in harmony with that described by Hosseini et al. (2007) and Zheng et al. (2010) who successfully detected ZYMV by RT-PCR.

Conclusion

Zucchini yellow mosaic virus (ZYMV) is an aphid-borne virus that causes yield losses and fruit quality defects in all cucurbit crops. It infects all cultivated cucurbit types including cucumber, pumpkin, squash, watermelon, weeds and ornamental plants as well as its transmission by different ways. Therefore, to minimize ZYMV spread in cucurbit crops integrated pest management (IPM) approaches must be used as follows:
Tohamy, et al.

Fig. 5. Electron micrographs showing flexuous filamentous particles, measuring 750 × 15 nm.

Fig. 6. TBIA detection of ZYMV in the leaves of squash plants cv. Eskandrani. (A) leaf petiole and midrib of infected plants grown in the field (F) and greenhouse (G), respectively. (B) leaf petiole and midrib of mechanically inoculated plants and grown in the greenhouse. (C) leaf petiole and midrib of aphid inoculated plants grown in greenhouse, compared with healthy leaf petiole and midrib.

Fig. 7. Electrophoretic analysis of the RT-PCR amplification revealed the primers amplified products of 458 bp for the coat protein, M = marker, Lanes 1-3, L1 = Infected leaf cv. Eskandrani, L2 = Healthy leaf cv. Eskandrani and L3 = Infected leaf petiole cv. Eskandrani.
* Eradication reservoir abundant weeds and old cucurbit crops after the final harvest because they are considered as a major factor for ZYMV transmission in early season cucurbit crops and play an important role in virus epidemiology.

* Prevention culturing of ornamental species including begonia and Malva sp. due to its potentiality as an alternative hosts (as mentioned by Lecoq et al., 2014).

* Cleaning footbaths and to wash equipment and machinery using 10% Clorox.

* Removing virus sources (cucurbit plants exhibiting virus symptoms) within the crop may help to reduce virus spread within the same field.

* Prevention moving workers, equipment and machinery to minimize virus spread from older crops to young ones.

* Planting certified cucurbits seed lots to reduce primary infection in early season.

* Culturing virus tolerant or resistant cucurbit varieties when available.

* Chemical control using alternative pesticides and plant extracts as well as repellents to reduce aphid population.

REFERENCES

لا يمكنني قراءة النص العربي من الصورة.

يرجى تقديم نص يمكن قراءته بشكل طبيعي.