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ABSTRACT: This study addresses the pressing issue of soil salinization in the agriculturally vital 

Nile Delta region, which poses a significant threat to agricultural productivity and food security. 

Conventional methods for assessing soil salinity often lack the speed required for timely decision-

making to effectively mitigate salinity in these lands, highlighting the need for advanced techniques. 

Harnessing the power of machine learning algorithms, this research endeavors to develop robust 

predictive models for soil salinity in the East Nile Delta (portsaid). Three state-of-the-art machine 

learning algorithms: Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), and 

Random Forest (RF), were rigorously applied using a comprehensive dataset derived from 60 soil 

samples collected across the region (Port Said Government). The models underwent meticulous 

training and validation processes, incorporating cross-validation techniques and stringent performance 

evaluation metrics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R
2
. 

The results unequivocally demonstrated the superior performance of SVM, achieving remarkable 

values of 0.008 dS/m for MSE, 0.087 dS/m for RMSE, 0.009 dS/m for MAPE, 0.069 dS/m for MAE 

and 0.99 for R
2
 during the training phase, further corroborated by an 0.004 dS/m for MSE, 0.062 dS/m 

for RMSE, 0.006 dS/m for MAPE, 0.046 dS/m for MAE and 1 for R
2
 during the validation stage. This 

study elucidates the immense potential of machine learning techniques in accurately predicting soil 

salinity, paving the way for proactive management strategies and sustainable crop production practices 

in the pivotal Nile Delta region, thus enhancing sustainable crop production and agricultural 

management. 

Key words: Soil salinity, machine learning, support vector machine, smart farming, Agri-environmental 

informatics. 

INTRODUCTION 

 Soil salinity poses a critical challenge to 

agricultural productivity, with the Nile Delta 

region experiencing its detrimental effects. This 

vast and agriculturally significant area faces a 

complex interplay of factors contributing to soil 

salinity, affecting crop yields and food security 

(Singh, 2022).  Conventional methods often fall 

short of providing accurate and timely assessments, 

prompting the exploration of machine learning 

(ML) as potential solutions to this pressing 

issue.  

The Nile Delta, an agricultural heartland, 

suffered of soil salinity due to a combination of 

human activities and environmental factors 

(Mohamed et al., 2011). Excessive use of 

irrigation practices, compounded by the intricate 

dynamics of the delta's ecosystems, results in 

elevated salinity levels. This not only hinders 

crop growth but also jeopardizes the delicate 

balance required for sustainable agriculture in 

the region (Abu-hashim and Shaban, 2017). 

The socio-economic impact of soil salinity 

extends beyond the farm gate, affecting 

livelihoods and the overall food supply chain. 

The integration of AI and ML technologies 
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emerges as a promising avenue to revolutionize 

soil salinity prediction and management (Wang 

et al., 2021). Algorithms such as Random Forest, 

XGBoost, and Support Vector Machines offer 

the ability to process vast datasets, identifying 

subtle patterns that traditional methods might 

overlook. By analyzing the intricate interactions 

among soil composition, climate, and agricultural 

practices, AI models hold the potential to enhance 

our understanding of soil salinity dynamics and 

contribute to effective mitigation strategies 

(Abd Elaziz et al., 2023) 

Objectives of the Study seeks to harness the 

power of ML models to accurately predict soil 

salinity in the Nile Delta region. The overarching 

goal is to develop robust models that provide 

real-time insights, enabling proactive management 

of soil salinity. The study further aims to compare 

the performance of various ML models, analyze 

critical input variables, and offer recommendations 

for the adoption of the most effective models to 

address soil salinity challenges in the region. 

In addition, the specifics of the study area, 

providing a comprehensive description of the 

Nile Delta's geography, climate, soil types, and 

cropping patterns. Subsequently, the data 

collection and preprocessing methodologies 

employed in this research, shedding light on the 

critical steps taken to ensure the accuracy and 

reliability of the data used. The methods section 

will then explore the evaluated ML algorithms, 

the input variables considered for each model, 

and the intricacies of the model training and 

validation processes. The performance evaluation 

metrics employed will be discussed, providing 

transparency into the criteria used to assess the 

efficacy of the models. 

The results and discussion section will be 

dedicated to presenting and analyzing the 

prediction outcomes of different models for key 

soil salinity parameters. A comprehensive 

comparison of model performances based on 

evaluation metrics will be undertaken, accompanied 

by an in-deep analysis of important input variables 

across various models. This section will also 

explore the reasons behind differences in model 

performances, providing valuable insights into 

the nuances of predicting soil salinity using AI 

and ML. 

MATERIALS AND METHODS 

Study Area and soil sampling 

The study focuses on the extension of the 

Nile Delta region especially south portsaid, it 

located in portsaid Governorate, Egypt between 

longitudes 31º58’0” E and 32º18’0” E and 

latitudes 30º59’0”N and 31º9’0”N, a crucial 

agricultural zone with distinctive characteristics. 

Located in northern Egypt, the Nile Delta is 

formed by the Nile River's intricate network of 

distributaries as they meet the Mediterranean 

Sea. On 20
th
 March 2022, 60 soil samples were 

collected at a depth of 30cm from the study area 

(Fig. 1). The region's climate is predominantly 

Mediterranean, characterized by hot, dry 

summers and mild, wet winters. The delta's soil 

types vary, encompassing alluvial soils enriched 

by the river's sediment deposits. Common crops 

include rice, wheat, and various fruits and 

vegetables. However, the region faces 

challenges associated with soil salinity. The 

delta's proximity to the Mediterranean, coupled 

with intensive irrigation practices, contributes to 

the accumulation of salts in the soil. This 

salinization poses a significant threat to 

agricultural productivity, affecting crop growth 

and soil fertility. 

Soil Chemical Properties Analysis 

The concentrations of soluble anions like 

    
   l      

   and cations like 

Na       a     g     were assessed from the 

extract of soil paste also ECe, utilizing the 

established methods outlined by Allison and 

Richards (1954). pH was measured in a 1:2.5 

soil-water suspension using pH meter. CaCO3 

content was measured using calcimeter method 

(Page, 1982). 

Description of Data Collected 

Comprehensive data were collected to 

develop accurate models for predicting soil 

salinity. Soil samples were strategically 

collected from various locations across the Nile 

Delta, considering different soil types and land-

use patterns. Analysis of these soil samples 

included key parameters: electric conductivity 

(ECe), calcium (   a  ), magnesium (   g  ), 

potassium (  ),  sodium (Na ),  chloride  ( l
 

), 
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Fig. 1. Location of study area and soil samples, northern Egypt 

 

sulfate (     
  ), and bicarbonate (     

 ). 

These parameters were chosen to capture the 

diverse chemical composition influencing soil 

salinity. 

Data Preprocessing 

To ensure the reliability of the dataset, 

several preprocessing steps were undertaken. 

Missing data were addressed through imputation 

methods, such as mean substitution, to maintain 

dataset integrity. Outliers, identified through 

robust statistical techniques, were either 

corrected or removed to prevent their undue 

influence on model training. 

Normalization and standardization techniques 

were applied to bring all variables to a consistent 

scale, facilitating the effective training of machine 

learning (ML) models. A correlation analysis 

identified and addressed multicollinearity 

among input variables, ensuring that redundant 

information did not compromise the models' 

performance. 

Spatial autocorrelation, a common issue in 

geospatial datasets, was mitigated through 

spatial smoothing techniques. This step aimed to 

reduce the impact of localized variations and 

enhance the generalizability of the models 

across the entire study area. 

The soil dataset was subsequently randomly 

divided into training and validation sets, with 

20% of the data allocated for validation, 

equivalent to 12 soil samples. The remaining 

80% of the data was designated for training, 

comprising 48 soil samples. This division 

facilitates the creation and evaluation of an 

effective model. The training set served to learn 

the machine learning models the underlying 

patterns in the data, while the validation set 

provided an independent dataset to assess the 

models' predictive performance. 

Machine Learning Algorithms 

The study employed two advanced ML 

algorithms: Random Forest (RF), XGBoost 

(XGB) and support vector machine (SVM). 
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Random Forest (RF) 

Random Forest is a powerful machine 

learning technique that belongs to the ensemble 

learning family of algorithms (Fadl et al., 

2023).  It has proven to be an effective approach 

for predicting soil salinity parameters due to its 

capability to model intricate relationships 

between input variables and target data. The 

algorithm constructs an ensemble of multiple 

decision trees, leveraging their collective 

strength to enhance the overall accuracy and 

robustness of the model (An et al., 2023). In the 

realm of soil salinity prediction, Random Forest 

can be employed to explore the complex 

interplay between various environmental factors, 

such as meteorological conditions, soil 

properties, subsurface characteristics, and the 

resulting soil salinity levels. The model utilizes 

these environmental variables as input features, 

while the target variable represents the soil 

salinity value to be predicted. The algorithm is 

trained and validated using a dataset collected 

from a specific region of interest, such as the 

Manas River Basin in China's Xinjiang Uygur 

Autonomous Region (Fadl et al., 2023). One of 

the notable advantages of Random Forest is its 

ability to handle both categorical and numerical 

data seamlessly, making it suitable for a wide 

range of soil salinity prediction studies. 

Additionally, the algorithm is robust to missing 

data and outliers, which are common challenges 

encountered in environmental datasets. By 

leveraging its ensemble approach, Random 

Forest can effectively capture the intricate 

patterns and relationships present in the data, 

leading to improved predictive performance 

compared to individual decision trees (An et al., 

2023). 

Extreme Gradient Boosting (XGB) 

XGBoost (Extreme Gradient Boosting) is an 

open-source machine learning library that 

provides a scalable, distributed gradient boosting 

framework for various programming languages, 

including C++, Java, Python, R, and others 

(Chen et al., 2015). This study utilized the 

XGBoost from pip library in Python to train and 

validate a prediction model using soil data. It is 

designed to be highly efficient, flexible, and 

portable, implementing machine learning algorithms 

widely used for regression, classification, and 

ranking problems. XGBoost is built on the 

principles of supervised machine learning, decision 

trees, ensemble learning, and gradient boosting 

(Ali et al., 2023).  XGBoost is renowned for its 

ability to achieve high accuracy in predictive 

modelling tasks, often outperforming other 

machine learning algorithms. It is particularly 

effective in handling large datasets with numerous 

features, and it includes regularization techniques to 

prevent overfitting (Chen et al., 2015). The 

model is trained using a gradient boosting 

approach, where each iteration builds a new 

decision tree that focuses on the residual errors 

of the previous tree. Some key features of 

XGBoost include parallel processing, built-in 

cross-validation, and the ability to handle non-

linear data patterns. It can also be integrated 

with distributed processing frameworks like 

Apache Hadoop, Apache Spark, and Dask for 

scalability (Developers, 2022). 

Support Vector Machine (SVM) 

SVM is a powerful type of supervised 
learning algorithm in machine learning, known 
for its effectiveness in solving classification and 
regression problems. They are particularly well-
suited for binary classification tasks, where the 
objective is to classify the elements of a dataset 
into two distinct groups. The fundamental aim 
of an SVM algorithm is to find the optimal 
decision boundary, often referred to as a 
hyperplane, that separates the data points of 
different classes. This hyperplane is especially 
useful when working in high-dimensional 
feature spaces. The key principle behind SVMs 
is to maximize the margin, which is the distance 
between the hyperplane and the closest data 
points of each category, thereby enhancing the 
ability to discriminate between different classes 
with high accuracy (Tabsharani, 2023). These 
Ensemble learning techniques have demonstrated 
effectiveness in managing intricate connections 
within datasets and are particularly suitable for 
forecasting soil salinity. 

Input Variables for Each Model 

For RF, SVM and XGB, the input variables 
comprised the comprehensive set of soil and 
environmental parameters collected during the 
data collection phase. This included 

ECe,Na       a     g  ,     
   l      

   
, along with pH and CaCO3. 
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Model Training and Validation Process 

The models underwent a rigorous training 

process using the designated training dataset. 

Hyperparameter tuning was performed to 

optimize model performance. Following 

training, the models were validated using the 

independent validation dataset to assess their 

ability to generalize to new, unseen data. In the 

process of training and testing the models, a k-

fold cross-validation approach (k = 5) was 

employed to prevent overfitting of the models 

(Bilali et al., 2021). 

Performance Evaluation Metrics 

The evaluation of the accuracy and stability 

of machine learning models in predicting soil 

salinity parameters relied on five statistical 

measures, as proposed by (Despotovic et al., 

2015).  These measures included the coefficient 

of determination (R
2
), root mean square error 

(RMSE), mean absolute error (MAE), Mean 

Absolute Percentage Error (MAPE), and Mean 

Square Error (MSE) 
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Where    is the predicated values,   ̂  is the 

observed values and   is the number of soil 

samples.  

RESULTS 

Statistical Analysis for the Soil Dataset 

The statistical descriptions of the dataset are 

presented in Table 1, which includes the count, 

mean, standard deviation, minimum, first 

quartile, median, third quartile, and maximum 

for soil variables. The dataset includes 60 

samples, with pH ranging from 7.5 to 8.3, 

electrical conductivity (EC) ranging from 3.85 

to 16.01 dS/m, sodium Na
+
 (mmolc/L) ranging 

from 10.37 to 26.6, potassium K
+
 (mmolc/L)  

ranging from 0.6 to 1.98, calcium Ca
2+

 (mmolc/ 

L) ranging from 3 to 55, magnesium Mg
2+

 

(mmolc/L) ranging from 8 to 175, bicarbonate 

HCO
3-

 (mmolc/L) ranging from 5 to 20, chloride 

Cl
-
 (mmolc/L) ranging from 3 to 64, sulfate 

SO4
2-

 (mmolc/L) ranging from 21.09 to 175.05, 

and  percentage of  CaCO3 ranging from 0.34 to 

6.71. From the statistical analysis, we find that 

the variation between the input values leads to 

an increase in the accuracy of the prediction of 

the models used. 

Correlation between Soil Parameters and 

EC 

The Pearson correlation matrix analysis shows 

that there is a significant correlation between the 

different features and soil salinity (p<0.05) see 

Fig. 2, revealing that there were low and moderate 

negative correlations between EC and Na
+
 

concentration (-0.39), EC and HCO3- concentration 

(-0.5), EC and Cl
-
 concentration (-0.071), EC 

and CaCO3 concentration (-0.0013), and positive 

correlations between EC and Mg
2+

 concentration 

(0.98), EC and SO4
2-

 concentration (0.97), EC 

and Ca
2+

 concentration (0.69), EC and K
+
 

concentration (0.58). Additionally, there was a 

strong positive correlation between EC and 

Mg
2+

 concentration and SO4
2-

 concentration 

(0.98), (0.97), respectively. These findings 

suggest that there may be complex relationships 

between these variables that could impact the 

accuracy of soil salinity predictions. 

Assessing Predictive Accuracy of 

Machine Learning Algorithms 

Three machine learning models Extreme 

Gradient Boosting (XGB), Support Vector 

Machine (SVM), and Random Forest (RF) were 

trained, tested, and evaluated utilizing the soil 

analysis dataset to create an accurate soil salinity 

prediction model Fig. 3. 

Table 2 shows statistical values which 

expresses of the three machine learning models 

performance during training–testing stage of 

dataset, there are significant differences in the 
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results of the forecast and the accuracy of the 

models, and this is due to the type of model used 

and the input and output data. The performance 

of each model was assessed based on Mean 

Absolute Error (MAE), Root Mean Square Error 

(RMSE), Mean Squared Error (MSE), Mean 

Absolute Percentage Error (MAPE), and R-

squared value. SVM performed exceptionally 

well, yielding the lowest Mean Squared Error 

(MSE) = 0.008 dS/m, Root Mean Square Error 

(RMSE)= 0.087 dS/m, Mean Absolute Error 

(MAE)= 0.069 dS/m, Mean Absolute Percentage 

Error (MAPE)= 0.009 dS/m, and the highest 

Coefficient of Determination   =0.99 compared 

to XGBoost and Random Forest. xGBoost had 

the longest training time per second (0.702 

seconds), followed by RF (0.488 seconds) and 

SVM (0.336 seconds). However, SVM had the 

shortest test time per second (0.019 seconds), 

compared to xGBoost (0.054 seconds) and RF 

(0.079 seconds). Specifically, SVM achieved an 

MSE of 0.008 dS/m, RMSE of 0.087 dS/m, 

MAE of 0.069 dS/m, and   score of 0.99, 

indicating superior accuracy compared to RF 

and XGBoots. Therefore, SVM performed better 

than RF and XGBoost, respectively. 

Table 3 describes statistical values which 

expresses of the three machine learning models 

performance during validation stage of predicted 

dataset. During the validation phase, the 

performance of each algorithm varied slightly. 

Notably, SVM outperformed both XGBoost and 

RF in terms of MSE (0.004 dS/m vs. 0.597 dS/m 

and 0.626 dS/m, respectively), RMSE (0.062 

dS/m vs. 0.773 dS/m and 0.791 dS/m, respectively), 

and MAE (0.046 dS/m vs. 0.589 dS/m and 0.685 

dS/m, respectively). Moreover, SVM also achieved 

a higher    value =1 than either RF or XGBoost 

(0.935 and 0. 938, respectively). Overall, these 

results indicate that SVM performed best in 

predicting soil salinity based on the input data. 

Model Fitting and Validation  

Fig. 4 illustrates scatter plots depicting the 

fitting results depending on observed and predicted 

values during the validation stage for SVM, RF, 

and XGBoost. These scatter plots were generated to 

visually represent the relationships between the 

observed and predicted values. It is evident from 

the scatter plots that SVM yielded the best 

model-fitting results (  =1, MSE=0.004, RMSE 

= 0.062, MAE=0.046, MAPE=0.006), with all 

points aligning closely along the diagonal line. 

XGBoost also demonstrated a good model-

fitting results (   =0.938, MSE= 0.597, RMSE= 

0.773, MAE= 0.589, MAPE= 0.061), although 

some points deviated slightly from the diagonal 

line. Notably, the model's accuracy in predicting 

observed values below 8.55 dS/m was lower 

compared to those above this threshold. On the 

other hand, RF displayed less alignment, with 

several points noticeably deviating from the 

diagonal line. Moreover, the model's accuracy in 

predicting observed values below 9.07 dS/m was 

inferior to those above this threshold. Consequently, 

SVM and XGBoost appear to be more effective 

in predicting soil salinity levels compared to RF. 

These findings offer visual support for the 

efficacy of the proposed predictive models, 

particularly the one based on the SVM method, 

given its consistently high    values throughout 

the validation process. 
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Fig. 2. Analysis of Pearson Correlation Matrix for Soil parameters 

 

 

Fig. 3. Framework for Machine Learning Models: SVM, RF, XGBoost 
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Fig. 4. Scatter Plots: The Observed vs. The Predicted Values for Three Models 

 

Table 1. Statistical descriptions of values of chemical soil properties  

Features Count Mean Std. Dev.
 

Min 25%
 

50%
 

75%
 

Max 

pH 60 7.88 0.21 7.5 7.7 7.9 8.1 8.3 

EC dS/m 60 9.3 3.45 3.85 6.61 8.61 11.8 16.01 

Na _ mmolc/l 60 17.07 4.4 10.37 12.73 16.73 20.26 26.6 

K _ mmolc/l 60 1.28 0.31 0.6 1.08 1.25 1.51 1.98 

Ca _ mmolc/l 60 15.67 9.13 3 10 14 19.25 55 

Mg _ mmolc/l 60 82.2 39.27 28 50.5 74 110.25 171 

HCO3
-
 60 10.6 3.4 5 8.75 10 12.25 20 

Cl
-
 60 17.53 10.72 3 9.5 16 23 64 

SO4
-2

 60 88.08 47.08 21.09 51.5 69.77 134.06 175.05 

%CaCO3 60 3.89 1.69 0.34 2.18 4.44 5.22 6.71 

25%, 50%, and 75% refer to the 25% quartile, median, and 75% quartile; Std. Dev. refer to Standard Deviation 
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Table 2. Statistical values of the three machine learning models during training–testing stage of 

input data 

Model 
Train time per 

second 

Test time per 

second 
MSE RMSE MAE MAPE R

2
 

SVM 0.336 0.019 0.008 0.087 0.069 0.009 0.999 

XGBoots 0.702 0.054 0.522 0.722 0.542 0.059 0.952 

Random Forest 0.488 0.079 0.599 0.774 0.636 0.077 0.945 

R2= coefficient of determination; RMSE= Root Mean Square Error; MAE= Mean Absolute Error; MAPE= Mean Absolute Percentage Error; 

MSE= Mean Square Error. 

 

 

Table 3. Statistical values of the three machine learning models during  validation stage of input 

Model MSE RMSE MAE MAPE R
2
 

SVM 0.004 0.062 0.046 0.006 1 

XGBoots 0.597 0.773 0.589 0.061 0.938 

Random Forest 0.626 0.791 0.685 0.068 0.935 

R2= coefficient of determination; RMSE= Root Mean Square Error; MAE= Mean Absolute Error; MAPE= Mean Absolute Percentage Error; 

MSE= Mean Square Error. 

 

DISCUSSION 

Soil salinization has emerged as a major 

global environmental issue, threatening 

agricultural productivity and food security 

(Zaman et al., 2018; Abu-Hashim et al., 2023). 

Therefore, accurate prediction of soil salinity is 

critical for effective management strategies 

aimed at mitigating its impacts. This study 

demonstrated the potential utility of machine 

learning techniques for developing robust 

predictive models of soil salinity based on a 

range of physiochemical parameters. Our 

findings showed that all three algorithms 

evaluated in this study, namely XGBoost, SVM, 

and RF, yielded promising results, although 

SVM performed best overall. 

Exploration of Soil Dataset 

Characteristics 

The statistical analysis of the soil dataset 

sheds light on the diverse range of soil 

parameters crucial for predicting soil salinity 

levels (Bouaziz et al., 2018).  The statistical 

analysis (Table 1) confirmed the variability 

within the soil properties, with pH ranging from 

7.5 to 8.3, and electrical conductivity (EC) 

ranging from 3.85 to 16.01 dS/m. This variation 

aligns with previous studies conducted in (Lal et 

al., 2008), where a wide range of soil salinity 

levels were reported in agricultural regions. The 

presence of this variability is crucial for the 

development of robust prediction models, as it 

allows the models to learn from a diverse range 

of data points (Gu et al., 2023). Correlation 

analyses reveal intricate relationships between 

soil parameters and EC, a key indicator of soil 

salinity (Werban et al., 2009).  The Pearson 

correlation analysis (Fig.2) identified significant 

correlations (p<0.05) between EC and several 

soil properties, including Mg²⁺ (0.98), SO₄²⁻ 
(0.97), Cl⁻ (0.18), and Ca²⁺ (0.69). These 

findings are consistent with established 

knowledge, as these elements are known to 

contribute to soil salinity (Corwin and Yemoto 

et al., 2019).  The strong positive correlations 

between EC and Mg²⁺ and SO₄²⁻ particularly 

highlight their influence on overall soil salinity 

levels. Understanding these relationships is 

essential for developing targeted strategies to 

manage soil salinity in agricultural fields.  
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Comparative Assessment of Machine 

Learning Algorithms 

The comparative evaluation of machine 

learning algorithms, including Extreme Gradient 

Boosting (XGBoost), Support Vector Machine 

(SVM), and Random Forest (RF), provides 

valuable insights into their performance in 

predicting soil salinity levels (Shi et al., 2021; 

Abd Elaziz et al., 2023). While SVM exhibits 

superior performance in terms of predictive 

accuracy metrics such as Mean Squared Error 

(MSE), Root Mean Square Error (RMSE), and 

R-squared value, it is essential to consider the 

strengths and limitations of each algorithm. 

Previous studies have also reported SVM's 

effectiveness in various predictive tasks, 

attributed to its ability to handle nonlinear 

relationships and high-dimensional data 

(Thissen et al., 2003).  However, RF and 

XGBoost may offer advantages in certain 

scenarios, such as interpretability and scalability. 

These findings contribute to the ongoing 

discourse on the selection and optimization of 

machine learning algorithms for soil salinity 

prediction (Xiao et al., 2023).  

Assessing the Predictive Accuracy of 

Machine Learning Models 

The evaluation of the three machine learning 

models (XGBoost, SVM, and RF) revealed that 

SVM outperformed the other models in terms of 

prediction accuracy (Table 2, 3). SVM achieved 

the lowest MSE (0.004 dS/m), RMSE (0.062 

dS/m), and MAE (0.064 dS/m), and the highest 

R² = 9.99 during training and the highest R²= 1 

during validation stages. These results suggest 

that SVM effectively captured the underlying 

patterns within the soil dataset and produced 

highly accurate predictions of soil salinity. The 

superiority of SVM compared to XGBoost and 

Random Forest might be attributed to its ability 

to handle complex non-linear relationships 

between the input soil properties and the target 

variable (EC) (Foronda and Colinet, 2023). 

Insights from Model Fitting and Validation  

The model fitting and validation stage 

provide further insights into the performance of 

machine learning algorithms in predicting soil 

salinity levels (Shi et al., 2021). While SVM 

demonstrates superior model fitting results, RF 

also exhibits satisfactory alignment between 

observed and predicted values. XGBoost, although 

displaying less alignment, may offer computational 

advantages in certain contexts. Comparative 

analyses of model performance highlight the 

importance of considering multiple metrics and 

trade-offs when selecting a predictive model 

(Beverly et al., 2005).  Additionally, rigorous 

validation procedures ensure the reliability and 

generalizability of predictive models across 

diverse datasets and environmental conditions. 

These insights contribute to advancing the 

understanding of machine learning applications 

in soil salinity prediction, thereby enhancing 

agricultural management, and promoting 

sustainable crop production in the Nile Delta. 

The scatter plots (Fig. 3) provided a visual 

representation of the model-fitting performance. 

SVM exhibited the best alignment between the 

observed and predicted EC values (R² = 1), 

indicating a strong agreement between the 

model's predictions and the actual soil salinity 

measurements. Conversely, XGBoost displayed 

a weaker alignment, with several data points 

deviating from the diagonal line, suggesting a 

less accurate prediction of soil salinity, 

particularly for values below 9.07 dS/m. These 

findings highlight the importance of model 

selection for achieving reliable soil salinity 

predictions. Overall, the results demonstrate the 

potential of machine learning, particularly SVM, 

for providing accurate and efficient soil salinity 

assessments.  

Agreement and Divergence in Research 

Findings 

Our findings align with previous research 
indicating SVM's superiority in soil salinity 
prediction tasks (Guan et al., 2013).  However, 
although XGBoost initially showed promising 
outcomes during the initial stages of development, 
ultimately, SVM emerged as the most accurate 
approach for predicting soil salinity levels. This 
could potentially be attributed to SVM's ability 
to handle complex datasets efficiently while 
avoiding overfitting issues commonly encountered 
when dealing with large feature spaces (Chang 
et al., 2011). By capitalizing on SVM remarkable 
capabilities and exploring complementary 
approaches, researchers can unlock novel ways 
to confront pressing environmental challenges 
linked to soil degradation and contamination.  
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Overall, this study highlights the potential of 

machine learning algorithms in predicting soil 

salinity and offers a promising avenue for future 

research. By improving the accuracy and 

reliability of soil salinity predictions, farmers 

and decision makers can make informed 

decisions regarding sustainable crop production, 

soil fertility, and enhanced agricultural 

management. The comprehensive analysis of 

machine learning algorithms provides valuable 

insights into their efficacy and suitability for soil 

salinity prediction tasks. While SVM emerges as 

a top performer, the choice of algorithm should 

consider various factors, including dataset 

characteristics, computational resources, and 

modeling objectives. 

Conclusion 

This study demonstrated the power of 

machine learning techniques, particularly the 

Support Vector Machine (SVM) algorithm, in 

accurately predicting soil salinity levels in the 

agriculturally important Nile Delta region. 

SVM's outstanding performance, with a low 

MSE of 0.004 dS/m and RMSE of 0.062 dS/m 

during training, and an    value of 0.99 during 

training and 1.0 during validation, affirms its 

ability to capture the complex relationships 

between soil parameters and salinity. The results 

recommend adopting SVM for predicting soil 

salinity in the region. The study's findings 

suggest that SVM is the most suitable model for 

predicting soil salinity in the Nile Delta region, 

offering accurate and reliable predictions crucial 

for informed decision-making in agricultural 

management.  

This study highlights SVM as the standout 

algorithm, while acknowledging the potential of 

alternative ML techniques like Random Forest 

and Extreme Gradient Boosting, both of which 

showed promise. Further exploration and 

optimization of these methods, tailored for 

specific scenarios or integrated with additional 

data sources, are warranted. Additionally, 

incorporating environmental and climatic factors 

could enhance predictive accuracy. The study 

sets the stage for future research in precision 

agriculture and sustainable crop production, 

leveraging ML, remote sensing, and real-time 

soil salinity monitoring. Future directions 

include combining algorithms, employing 

geospatial data and IoT monitoring, edge 

computing, developing decision support 

systems, exploring model transferability, and 

integrating economic and socio-cultural factors 

for sustainability. 
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 ًوارج التعلن الآلي استخذام عبر الجافتتحسيي التٌبؤ بولوحت التربت في الوٌاطق شبه 

 ايٌاس هحوذ وجذي –خالذ جودة سليواى  – عبذ العزيز السيذ أهييأحوذ 

 سعيذ الذسوقي ابوهاشن هحوذ – سعيذ هتولي احوذ هحوذ

 مصر -جبمعخ السقبزيق  –كليخ السراعخ  –قسم الأراضي 

هذه  الرراةذذخ رزلذبلم الة ذذملخ الةللذخ لزةلذذيف الزرثذذخ تذي مليلذذخ رلزذب الليذذت السراعيذذخ  الزذي ر ذذمت ر ريذر ا كجيذذر ا ل  زبجيذذخ        

السراعيخ لالأمن الغهائي. تبليرق الزلليريخ لزلييم ملوحذخ الزرثذخ لبلج ذب مذب ر زلذر للذع السذرعخ الةيلوثذخ قراذبت اللذراراد تذي            

ليف تي هه  الأراضي  مةب يجرز اللبجذخ للذع رلليذبد مزلرمذخ. لثبةذزارا  قذوح يوارزميذبد رعلذم         الوقذ الةلبةت لللر من الزة

يوارزميذبد رعلذم الآلذخ     صذثس الآلخ  رسعع هه  الرراةخ للع ريوير  ةبتج رلجؤيخ قويخ لةلوحخ الزرثخ تذي رلزذب الليذت. رذم رليذيم      

 Random  لSupport Vector Machine (SVM)  لExtreme Gradient Boosting (XGBoost)مزيذورح:  

Forest (RF) الرراةذخ  جةيذ  ن لذبم مليلذخ    مذن عيلخ ررثخ رم جةع ب  69  ثرقخ ثبةزارا  مجةوعخ ثيب بد شبملخ مسزةرح من 

يضعذ اللةبتج لعةليبد ررريت لرللق رقيلخ  لشذةلذ رلليذبد الزللذق الةزلذبم  لمعذبيير رليذيم        ثورةعير.تي جلوة  الواقعخ

R  لRoot Mean Squared Error (RMSE)  لMean Squared Error (MSE)خ  ثةذب تذي تلذ     الأرام الصذبرم 
2

 .

  MSEلذ    dS/m 9.998  حيذش حلذق قية ذب مللوظذخ ثليذش كب ذذ       SVMنظ رد اللزبئج ثوضذو  الأرام الةز ذوق للةذوتج    

9.987 dS/m   لRMSE  9.999 dS/m    لذMAPE  9.969 dS/m    لذMAE لذ    9.99لR
2

يذثم مرحلذخ الزذرريت      

 9.946ل  MAPEل   dS/m 9.996ل  RMSEل   dS/m 9.962ل  MSEل   dS/m 9.994مةب رم رأكير  ثبلإضبتخ للع 

dS/m   لMAE  ل   1لR
2

يثم مرحلخ الزللق. روضف هه  الرراةخ الإممب بد ال بئلخ لزلليبد رعلم الآلخ تذي الزلجذؤ الذرقيق     

يذق قةذزراريجيبد لرارح اةذزجبقيخ لمةبرةذبد ل زذبج ملبسذيت مسذزرامخ تذي مليلذخ رلزذب الليذت            ثةلوحخ الزرثخ  مةذب ية ذر الير  

ةذرع  اراذبت اللذرار لذرخ مزاذهخ       زيذبرح تذي   لالةسذبهةخ  الليويخ  لثبلزبلي رعسيس ل زبج الةلبسيت الةسذزرا  للرارح السراعذخ  

 .الأراضي السراعيخ الة لورح ثسجت الزةلف ةلويباللرار لإ لبت 
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