ABSTRACT: Sustainable soil management with appropriate understanding of soil characteristics is vital in maintaining and improving soil fertility. The objectives of the present study is to characterize the spatial variability across a soil for selected using GIS technique. A total of 120 geo-referenced representative soil samples (from 0 to 0.60 m depth) were collected from Sahl Al-Hussainiyah, Sharkia Governorate, Egypt. Analyses included pH, EC, CaCO₃, soil organic matter (OM), available N, P and K, cations exchange capacity (CEC) and bulk density (BD). Spatial distribution pattern varies from moderate to strong. The best fit semivariogram model of EC, K and BD was stable model, whereas K-Bessel model was the best fit model of pH, OM and CEC. With the exponential model, the best fit was with CaCO₃, N and P. According to the spatial distribution map, five zones were identified, where the study area was classified to < 7.17, 7.17 to 7.41; 7.41 to 7.66; 7.66 to 7.89, and > 7.8 for pH, < 6.70, 6.71 to 8.17; 8.18 to 9.73; 9.74 to 11.4, and > 11.5 dSm⁻¹ for EC, < 2.3, 2.31 to 2.92; 2.93 to 3.76; 3.77 to 4.52, and > 4.53% for CaCO₃, < 0.43, 0.44 to 0.52; 0.53 to 0.61; 0.62 to 69, and > 0.70% for OM, < 30.3, 30.3 to 37.9, 37.9 to 45.6, 45.6 to 52.6, and > 62.6 mg kg⁻¹ for N, < 1.61, 1.62 to 2.43; 2.44 to 3.31; 3.32 to 4.30, and > 3.41 mg kg⁻¹ for P, < 103, 104 to 113; 114 to 124; 125 to 132, and > 132 mg kg⁻¹ for K, < 43.2, 43.2 to 46.8; 46.8 to 50.8; 50.8 to 55.8, and > 55.8 cmolc kg⁻¹ for CEC and < 1.27, 1.28 to 1.32; 1.33 to 1.39; 1.40 to 1.51, and > 1.52 Mg m⁻³ for BD. Thus, this methodology can be used successfully in Spatial Variability of some soil properties.

Key words: Precision agriculture, spatial distribution, GIS, Sahl Al-Hussainiyah.

INTRODUCTION

Sustainable soil management with proper understanding of soil characteristics make a difference in maintaining and improving soil fertility and avoiding degradation, (Thapa and Yila, 2012; Zhao et al., 2013). Due to effects of soil physical, chemical and biological processes in the soil system along with human and animal activities, marked soil characteristics occur among soils differ (Goovaerts, 1998). The main key to site-specific soil management for sustainable crop production by addition of nutrients is proper understanding of the special variation of soil characteristics (Behera and Shukla, 2015; Brevik et al., 2016; Bogunovic et al., 2017; Shukla et al., 2017). Spatial soil characteristics could be assessed using geostatistical methods like ordinary kriging (Mueller et al., 2003; Behera et al., 2018). Saito et al. (2005) revealed that values in unsampled locations can be predicted through geospatial modelling techniques by studying the spatial correlation analysis between the estimated and sample points and reduced estimation errors and related costs. classification the heterogeneous soil into different zones having homogeneous characteristics by delineation site of management zone (MZ) of soil is a technique to address soil heterogeneity (Ortega and Santibáñez, 2007; Xin-Zhong et al., 2009; Peralta et al., 2015). Geo-statistics principal component analysis (PCA) and cluster analysis are methods used by several researchers to delineate soil MZs in agroecosystems including different crops for site specific soil management (Davatgar et al., 2012; Tripathi et al., 2015; Nawar et al., 2017; Shukla et al., 2017).
2017). The concept of "management zone" was developed in response to major soil variation is mainly intended to improve agricultural inputs (Ali and Ibrahim, 2016). The homogeneous sub areas in a field which have similar yield limiting factors called "site-specific management zones" (Doerge, 1999; Khosla and Shaver, 2001). The main objective of site-specific management is managed variability of soil spatially by adding inputs according to the site-specific requirements of a specific soil and crop (Fraisse et al., 2001). In theory, the arable field can be classified into management zones that reflect the general difference in soil characteristics using management zone delineation technique. There are considerable attempts to delineate such management zones (Ali and Ibrahim, 2016). Many studies have attempted to describe the association between topography of arable fields and soil nutrient content such as nitrogen (Bruulsema et al., 1996; Cassel et al., 1996) as well as differences in yield (Verity and Anderson, 1990). The objectives of the present study is characterizing spatial variability across a soil for selected soil properties using GIS technique.

MATERIALS AND METHODS

Study Area and Soil Sampling

The study was conducted in Sahl Al-Hussainiyah, Sharkia Governorate, Egypt, bounded by 31°47′30″ and 32°11′30″ E and 30°44′30″ and 31°11′30″ N (Fig. 1). Based on Port Said and Ismailia meteorological station, the maximum temperatures varied from 31.9 to 37.1°C in August; and the lowest varied between 9.7 to 13.1°C in January with an annual average of 22.5°C and 22.8°C, respectively and a wide difference between summer and winter. The annual precipitation varied from 33.3 to 73.3 mm, with no even distribution. The highest precipitation was in November and December (7.7 to 18 mm). The relative humidity varied from 58 to 72%. The wind velocity ranged between 14.2 and 18.7 km hr.\(^{-1}\) at Port Said, recorded in September and March, respectively. In Ismailia it ranged between 10 and 17.1 km hr.\(^{-1}\) in November and March, respectively.

A total of 120 geo-referenced representative soil samples (from 0 to 0.60 m depth) were collected using hand auger and prepared for analysis (air-dried, crushed and passed through a 2 mm sieve). GPS devices were used to record the latitude and longitude of each sampling point collected from five villages Viz. Tariq-Bin-Ziyad, Al-Slah, Khaled-Bin-Walid, El-Azhar and Al-Rowad. The sampling areas were areas under reclamation by excessive leaching processes because of the high salt concentrations in soil profiles. Soil pH, EC, CaCO\(_3\), OM, available N, P and K, CEC and BD were analyzed according to Richards (1954) and Van Reeuwijk (2002).

Statistical, Geostatistical, Principal Component and Cluster Analysis

Descriptive statistics revealing, minimum, maximum, mean and standard deviation, were done using XLSTAT software version 2016. Normality distribution of soil properties were tested using shapiro-wilk test. Relationships between pairs of soil properties were done through Pearson correlation coefficient. ArcGIS 10.4.1 software was used and semi-variogram was used to evaluate the spatial distribution pattern of each soil property. Semi-variogram was calculated using the following Eq. 1 (Behera et al., 2018).

\[
\gamma(h) = \frac{1}{2N(h)} \sum_{\alpha=1}^{N(h)} [Z(x_\alpha + h)]^2
\]

Where \(\gamma(h)\), N (h), Z(x\(\alpha\)) and Z(x\(\alpha\) + h) represent semi-variance for the lag distance h, number of sample pairs separated by the lag distance h, measured value at \(\alpha\)th sample location and measured value at point \(\alpha + h\)th sample location, respectively.

Many criteria were used to evaluate different semi-variogram models like spatial dependence (SDC), Mean error (ME), Root-Mean-Square error (RMSE), Mean Standardized error (MSE), Root-Mean-Square Standardized error (RMSSE) and Average Standard Error (ASE). Generally, the best fit models was obtained for have mean error "ME", mean standardized error "MSE" and average standard error "ASE" values close to zero and root mean square error "RMSE" close to one (Gundogdu and Guney, 2007). Cambardella et al. (1994) reported that the
Sample locations

Fig. 1. Study area and locations of samples
semi-variogram model is based on nugget to sill ratio, spatial dependence (SDC), to strong (<0.25), moderate (0.25 – 0.75) and weak (> 0.75). The equations of criteria are as follows (Johnston et al., 1996).

\[
\begin{align*}
ME & = \frac{1}{N} \sum_{i=1}^{N} [Z(x_i) - \hat{Z}(x_i)] \\
MSE & = \frac{1}{N} \sum_{i=1}^{N} \frac{Z(x_i) - \hat{Z}(x_i)}{\sigma(i)} \\
ASE & = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \sigma(i)} \\
RMSE & = \sqrt{\frac{1}{N} \sum_{i=1}^{N} [Z(x_i) - \hat{Z}(x_i)]^2} \\
RMSSE & = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{Z(x_i) - \hat{Z}(x_i)}{\sigma(i)} \right)^2}
\end{align*}
\]

Where \(\hat{Z}(x_i) \), \(Z(x_i) \), \(n \) and \(\sigma \) are refer to the predicted value, the observed value, the number of values and standard error for location \(i \), respectively.

Interpolation mapping was carried out using ordinary kriging method, a more reliable method than other methods based on MSE (Meul and Van Meirvenne, 2003), to determine the soil characteristics values at un-sampled locations. It is an unbiased predictor for the random process as well as reducing influence of outliers (Triantafilis et al., 2001).

RESULTS AND DISCUSSION

The Studied Soil Properties

Table 1 show that statistics of soil properties varied greatly. The mean values of pH, EC, CaCO₃, OM, N, K, P, CEC and BD were 7.61±0.38, 9.43±3.79 dS m⁻¹, 3.55±1.61%, 0.6±0.15%, 42.39±13.95 mg kg⁻¹, 0.69±0.15 mg kg⁻¹, 2.59±1.59 mg kg⁻¹, 47.96±10.81 cmol, kg⁻¹ and 1.31±0.10 Mg m⁻³, respectively. According to Baruah and Barthakur (1997), the soil is located within the lower category for OM, N, K and P. Concerning soil pH the soil falls into the normal category, while it falls into the high category of salinity. Based on FAO (1973), the soil is non-calcareous, where CaCO₃ is less than 15%. These findings agree with several studies, carried out in the same study area (Nasef et al., 2009; Shaban et al., 2010; Ali et al., 2014; Ibrahim et al., 2015; Abd Elghany et al., 2019; Mohaseb et al., 2019). Although the great majority of soils in Egypt have pH exceeding 7 and up to 7.5-8.0 there are some areas have pH slightly below pH 7.0. This can be explained as follows, these areas are subject to excessive leaching therefore most cations are leached out of soil profile and the continued leaching leads to solodization and podsolization forming degraded soils (Soloth) (Gedroiz, 1925; Kellog, 1934). Solodization is marked by a loss of sodium and other basic cations and increased H⁺ in the exchange complex, first in the near-surface horizons. The soils formed in the initial stages are called Solodized Solonetz (Westin, 1953; Janzen and Moss, 1956; Whittig, 1959; Hallsworth and Waring, 1964; Miller and Pawluk, 1994; Anderson, 2010). Soils formed in the final stages are called Soloth (Kellog, 1934), Solod (Westin, 1953; Heck and Mermut, 1992; Miller and Pawluk, 1994; Zaidel'man et al., 2010) or Solodi (Janzen and Moss, 1956; Whittig, 1959). This indicates that the action of salinization and solonization in the Saline-Sodic soils has been replaced by the solodization process in the studied areas, with leaching of exchangeable bases, including Na⁺, their replacement by H⁺ and a consequent decrease in pH. These results agree with Furquim et al. (2017) who reported that leaching of exchangeable bases, and substitution with H⁺ ions can decrease pH. Buringh (1970) reported that Solodization is an intensive leaching which can follow alkalinization in older soils. The exchangeable sodium is replaced by H⁺ ions, and there may be a strong argillation. Leaching clay particles from the A to the B horizon. Consequently, there would be formation of natic horizon with a columnar structure.

All soil properties do not follow a normal distribution, where the value of P of the Shapiro-Wilk Test is less than 0.05 except for CEC (Table 1). Thus, before assuming spatial distribution
Table 1. Descriptive statistic summary of the selected soil characteristics in current study

<table>
<thead>
<tr>
<th></th>
<th>MAX</th>
<th>MIN</th>
<th>MEAN</th>
<th>SD</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.33</td>
<td>7.09</td>
<td>7.61</td>
<td>0.38</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>EC, dSm⁻¹</td>
<td>18.15</td>
<td>3.39</td>
<td>9.43</td>
<td>3.79</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>CaCO₃ (%)</td>
<td>6.71</td>
<td>0.34</td>
<td>3.55</td>
<td>1.61</td>
<td>0.002</td>
</tr>
<tr>
<td>OM (%)</td>
<td>0.85</td>
<td>0.06</td>
<td>0.60</td>
<td>0.15</td>
<td>0.001</td>
</tr>
<tr>
<td>Available nutrient (mg kg⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>71.40</td>
<td>21.00</td>
<td>42.39</td>
<td>13.95</td>
<td>0.000</td>
</tr>
<tr>
<td>K</td>
<td>0.99</td>
<td>0.37</td>
<td>0.69</td>
<td>0.15</td>
<td>0.015</td>
</tr>
<tr>
<td>P</td>
<td>7.39</td>
<td>0.14</td>
<td>2.59</td>
<td>1.59</td>
<td>0.000</td>
</tr>
<tr>
<td>CEC, cmol.kg⁻¹</td>
<td>74.61</td>
<td>22.50</td>
<td>47.96</td>
<td>10.81</td>
<td>0.788</td>
</tr>
<tr>
<td>BD, Mg m⁻³</td>
<td>1.75</td>
<td>1.08</td>
<td>1.31</td>
<td>0.10</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Correlation Matrix between Soil Properties

Fig. 2 shows the correlation coefficient (r) matrix of soil properties. There were positive, significant correlations between pH with available-N (r = 0.28) and K (r = 0.32), and a negative one between pH and EC (r = -0.24). On the other hand, there were positive significant correlations between EC and CaCO₃ (r = 0.23) and between EC and available K (r = 0.51), while there was a negative correlation between EC and available-P (r = -0.39) and between EC and CEC (r = -0.53). There were a positive correlation between CaCO₃ and available K (r = 0.38) and a negative one between CaCO₃ and OM (r = -0.26) and between CaCO₃ and available P (r = -0.37). There was positive correlation between OM and available N (r = 0.55) as well as available P (r = 0.18). Correlation between available N and available P was positive (r = 0.18). There was a negative correlation between available K and available P (r = -0.30) as well as CEC (r = -0.26), and positive one between available P and CEC (r = 0.26). Pairs of other properties have no significant correlations.

Loeppert and Suarez (1996) observed positive relationship between pH and CaCO₃, as well as, between essential plant nutrients.

Semi-Variogram Parameters and Mapping Soil Properties Using Ordinary Kriging

The spatial distribution pattern of the different soil characteristics was specified using ArcGIS 10.2.1 program using Ordinary Kriging (OK) for “Interpolation mapping” to estimate the values of soil properties for un-sampled locations. Based on several criteria such as SDC, ME, RMSE, MSE, RMSSE and ASE, the Semi-variogram was evaluated (Table 2 and Fig. 3). The best fit model of soil EC, available K and BD was the “Stable model”, where as the “K-Bessel” model was the best fit model for pH, OM and CEC, Using the “Exponential model” showed the best fit with CaCO₃, available N and available P (Table 2 and Fig. 3). The nugget values of all the studied parameters were negligible, varied from 0 to 1.23, except the nugget value of CEC, which was considerable (70.48). However, the sill values varied from 0.01 to 215.44.

Zhang et al. (2007) reported that large nugget values indicates that the soil indicators are affected by ecological practices over a limited-scale and that selected sampling distance could not clearly capture the spatial dependence. Sill values indicating the difference of the sampled population at large separation distance...
Fig. 2. Correlation matrix show the values in bold are different from 0 with a significance level \(\alpha = 0.05 \)

Table 2. Semi-variogram parameters of the soil properties of the study area

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K-Bessel</td>
<td>Stable</td>
<td>Exponential</td>
<td>K-Bessel</td>
<td>Exponential</td>
<td>Stable</td>
<td>Exponential</td>
<td>K-Bessel</td>
<td>Stable</td>
</tr>
<tr>
<td>Nugget</td>
<td>0.00</td>
<td>0.00</td>
<td>1.23</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.80</td>
<td>70.48</td>
</tr>
<tr>
<td>Partial sill</td>
<td>15.94</td>
<td>15.78</td>
<td>2.14</td>
<td>0.03</td>
<td>215.44</td>
<td>0.02</td>
<td>1.92</td>
<td>46.63</td>
<td>0.01</td>
</tr>
<tr>
<td>Sill</td>
<td>15.94</td>
<td>15.78</td>
<td>3.37</td>
<td>0.03</td>
<td>215.44</td>
<td>0.02</td>
<td>2.72</td>
<td>117.11</td>
<td>0.01</td>
</tr>
<tr>
<td>Nugget/Sill</td>
<td>0.00</td>
<td>0.00</td>
<td>0.37</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.29</td>
<td>0.60</td>
<td>0.11</td>
</tr>
<tr>
<td>Major Range</td>
<td>4582.15</td>
<td>6852.02</td>
<td>12581.25</td>
<td>2963.95</td>
<td>2705.00</td>
<td>4213.28</td>
<td>4891.50</td>
<td>2880.50</td>
<td>1582.72</td>
</tr>
<tr>
<td>SDC</td>
<td>Strong</td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
<tr>
<td>ME</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.01</td>
<td>0.00</td>
<td>-0.23</td>
<td>0.00</td>
<td>-0.02</td>
<td>-0.12</td>
<td>0.00</td>
</tr>
<tr>
<td>RMSE</td>
<td>3.26</td>
<td>3.44</td>
<td>1.26</td>
<td>0.14</td>
<td>11.90</td>
<td>0.09</td>
<td>1.33</td>
<td>9.92</td>
<td>0.09</td>
</tr>
<tr>
<td>MSE</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.01</td>
<td>0.00</td>
<td>-0.02</td>
<td>0.00</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>RMSSE</td>
<td>0.94</td>
<td>0.97</td>
<td>0.96</td>
<td>1.11</td>
<td>1.02</td>
<td>0.89</td>
<td>1.02</td>
<td>1.03</td>
<td>1.24</td>
</tr>
<tr>
<td>ASE</td>
<td>3.45</td>
<td>3.55</td>
<td>1.34</td>
<td>0.13</td>
<td>11.73</td>
<td>0.10</td>
<td>1.31</td>
<td>9.59</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Fig. 3. Semi-variogram parameters of the soil properties of the study area
signified that, in case of the data with no trend, sill values are higher in CEC (117.11) and available N (215.49). Variations in nugget and sill values were observed by Behera et al. (2016) and Tesfahunegen et al. (2011).

Based on Cambardella et al. (1994) research, nugget to sill ratio values were classified as <0.25 for strong spatial dependence (attributed to intrinsic factors), 0.25 – 0.75 for moderate spatial dependence (attributed to both intrinsic and extrinsic factors) and > 0.75 for weak spatial dependence (attributed to extrinsic factors). Nugget to sill showed ratio values less than 0.25 for all the studied soil properties, except CEC indicating a strong spatial dependence for all studied soil properties, whereas spatial dependence for CEC was moderate. Behera et al. (2018) mentioned that the strong spatial dependence of soil characteristics is controlled by inherent soil properties, such as mineral composition and texture of the soil whereas extrinsic factors influence moderate and weak spatial dependence of soil properties, such as agricultural practices including tillage and fertilizer application. The range value of semi-variogram varied between 1582.7 for BD to 12581.25 for CaCO$_3$ (Table 2). A large range value indicates that the soil characteristics were affected by natural and human factors over greater distance than soil properties (López-Granados et al., 2002; Behera et al., 2018). The cross-validation technique was used to measure accurate predictions for soil characteristics (Table 2). Gundogdu and Guney (2007) reported that the best fit model is that which has mean ME, MSE and ASE values close to zero, and RMSE close to one.

The spatial distribution maps of the different soil characteristics were prepared using ordinary kriging (Fig. 4). The spatial distribution map reveals that 24.76, 14.39, 16.40, 27.36 and 17.09% of the study area had pH value of < 7.17, 7.17 to 7.41, 7.41 to 7.66, 7.66 to 7.89 and > 7.89, respectively. Soil EC showed that 9.15, 28.09, 26.49, 15.46 and 20.81% of the study area had values of < 6.70, 6.71 to 8.17, 8.18 to 9.73, 9.74 to 11.44 and > 11.45 dS m$^{-1}$, respectively. Concerning CaCO$_3$, 22.62, 22.35, 12.57, 27.50 and 17.96% of the study area showed contents of < 2.3, 2.31 to 2.92, 2.93 to 3.76, 3.77 to 4.52 and > 4.53%, respectively. Concerning organic matter, 6.52, 19.98, 21.56, 28.92 and 23.02% of the study area showed organic matter contents of < 0.43, 0.44 to 0.52, 0.53 to 0.61, 0.62 to 0.69 and > 0.70%, respectively. Regarding available N, there were 30.28, 18.80, 25.74, 23.29 and 15.75% of the study area having values of < 30.28, 30.29 to 37.93, 37.94 to 45.58, 45.59 to 52.64 and > 62.64 mg kg$^{-1}$, respectively. Concerning available P, 14.08, 21.72, 31.70, 21.15 and 11.35% of the study area contained < 1.61, 1.62 to 2.43, 2.44 to 3.31, 3.32 to 4.30 and > 3.41 mg kg$^{-1}$, respectively. For available K 22.87, 22.22, 21.19, 20.95 and 12.77% of the study area showed contents of < 103, 104 to 113, 114 to 124, 125 to 132 and > 132 mg kg$^{-1}$, respectively. Results of CEC showed that 14.50, 28.36, 25.70, 18.57 and 12.88% of the study area had values of < 43.17, 43.18 to 46.81, 46.82 to 50.76, 50.77 to 55.78 and > 55.79 cmol c kg$^{-1}$, respectively. The BD results showed that 22.14, 41.29, 27.37, 7.28 and 1.92% of the study area were having BD values of < 1.27, 1.28 to 1.32, 1.33 to 1.39, 1.40 to 1.51 and > 1.52 Mg m$^{-3}$, respectively.

Vasu et al. (2017) mentioned that maps of spatial distribution are able to identify and delineate the problematic zones and represent important tools in site specific management. Spatial distribution of soil characteristics provides a many site information vital for various purposes on environmental forecasting, precision agriculture, and natural resource management (Tan and Dowling, 1984).

Conclusion

As for the above mentioned results, the study confirms that this methodology can be used to clarify spatial variability of soil properties. The results showed that the best fit semivariogram model of EC$_c$, K and BD was stable model, whereas K-Bessel model was the best fit model of pH, OM and CEC, where the exponential model was used the best fit was with CaCO$_3$, N and P. According to the spatial distribution map, five zones were identified, and the study area was classified to < 7.17, 7.17 to 7.41, 7.41 to 7.66, 7.66 to 7.89, and > 7.8 for pH; < 6.70, 6.71 to 8.17, 8.18 to 9.73, 9.74 to 11.44 and > 11.45 dS m$^{-1}$ for EC; < 2.3, 2.31 to 2.92, 2.93 to 3.76, 3.77 to 4.52, and > 4.53% for CaCO$_3$; < 0.43, 0.44 to 0.52, 0.53 to 0.61, 0.62 to 0.69 and > 0.70% for organic matter; < 30.28, 30.29 to 37.93, 37.94 to 45.58, 45.59 to 52.64 and > 62.64 mg kg$^{-1}$ for N; 14.08, 21.72, 31.70, 21.15 and 11.35% for P; 22.87, 22.22, 21.19, 20.95 and 12.77% for K; 14.50, 28.36, 25.70, 18.57 and 12.88% for CEC; 22.14, 41.29, 27.37, 7.28 and 1.92% for BD.

The BD, K, CaCO$_3$, pH, OM and CEC showed strong spatial dependence (attributed to extrinsic factors). The nugget to sill values were classified as <0.25 for strong spatial dependence, 0.25 – 0.75 for moderate spatial dependence and > 0.75 for weak spatial dependence. The best fit semivariogram model of BD, K, CaCO$_3$, pH, OM and CEC was the Bessel, Bessel, Exponential, Exponential, Exponential and Exponential models, respectively. The best fit models were used to map the spatial distribution of soil characteristics in the study area.
Fig. 4. Spatial distribution maps of soil characteristic of the study area using kriging method
0.52, 0.53 to 0.61, 0.62 to 69, and > 0.70% for OM; < 30.3, 30.3 to 37.9, 37.9 to 45.6, 45.6 to 52.6, and > 62.6 mg kg$^{-1}$ for N; < 1.61, 1.62 to 2.43, 2.44 to 3.31, 3.32 to 4.30, and > 3.41 mg kg$^{-1}$ for P; < 103, 104 to 113, 114 to 124, 125 to 132, and > 132 mg kg$^{-1}$ for K, < 43.2, 43.2 to 46.8, 46.8 to 50.8, 50.8 to 55.8, and > 55.8 cmolc kg$^{-1}$ for CEC and < 1.27, 1.28 to 1.32, 1.33 to 1.39, 1.40 to 1.51, and > 1.52 Mg m$^{-3}$ for BD.

REFERENCES

Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils. LWW.

التبانيان المكاني لبعض صفات التربة في سهل الحسينية، محافظة الشرقية، مصر

بسمة سليمان عامر - كرم فؤاد موسى - عادل عبد الرحمن شيرة - محمد كمال عبد الفتاح
قسم علم الأراضي - كلية الزراعة - جامعة الزقاقيق - مصر

إن الإدارة المستدامة للترية والفهم الجيد لخصائص التربة يحدث فرقًا في الحفاظ على مستوى خصائصها أو تحسينه وتتجنب تدهورها، الأمر الذي قد يمثل قضية ذات أهمية عالمية. لذلك فإن أهداف إجراء هذه الدراسة هي محاكاة دراسة التباين المكاني لخصائص التربة باستخدام تقنيات نظم المعلومات الجغرافية، تتم مع 120 عينة تربة ممثلة لمنطقة الدراسة ومساحة جغرافية (من صغر إلى 0.60 متر) من سهل الحسينية، محافظة الشرقية، مصر، ضمن المتابعتن التحليلات درجة الحموضة وـ pH، والتصنيف الكرومي، CuCO₃، وـCaCO₃، كربونات الكالسيوم، pH، التنسيف الكرومي، التربولوجيين الميسب، الفوسفور، الميسب، السعة التبالية الكاتيونية CEC، والكثافة الظاهرية BD، الكثافة السماوية الظاهرية CEC، وـ ECe.

وبطبيعة الحال، فإن انتشار النتائج هي كتلة كاديراً كمكاني، حيث تم تحديد أن النموذج K-Bessel، بينما كان النموذج Stable، درجة التوزيع الكرومي والتنسيف الميسب والكثافة الظاهرية كان النموذج K-Bessel الأفضل لدقة حموضة التربة والمادة العصوية وكذا للسعة التبالية الكاتيونية.

اتهامات الأراضي المفترض - كلية الزراعة - جامعة بنها.

استاذ ورئيس قسم الأراضي - كلية الزراعة - جامعة الزقاقيق.

المؤلفون:
1- د. علي أحمد عبد السلام
2- د. أيمن محمود حلمي محمد أبو زيد